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We consider the full multinomial combinatorics of all irreducible representations of
the octahedral (cubic) symmetry as a function of partitions for vertex, face and edge
colorings. Full combinatorial tables for all irreducible representations and all multino-
mial partitions are constructed. These enumerations constitute multinomial expansions
of character-based cycle index polynomials, and grow in combinatorial complexity as a
function of edge or vertex coloring partitions.

KEY WORDS: group representations, combinations, multinomials, Pólya’s theorem,
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1. Introduction

Applications of combinatorics and graph theory to chemical problems and
spectroscopy have been the topic of numerous studies in the last several decades
[1–33]. These applications have ranged from simple enumeration of chemical
isomers, isomerization reactions, enumeration of polyhedral ligand substitu-
tions, chirality, use of mark groups, double cosets, combinatorics of configu-
ration interaction computations, many-electron correlations, NMR, ESR, and
so on. Both mathematical and chemical areas have enjoyed significant advances
and growth as a result of this cross-fertilization. Pólya’s classical paper [6, 7]
on a combinatorial enumeration technique, now well known as, Pólya’s theo-
rem derived its motivation from chemistry. Enumerations of chemical isomers
[1–7,8–18] including those of fullerene cages [31] have in turn been benefited by
Pólya’s technique and its generalization.

Advances have been made in the mathematical context by Williamson
[22, 23] and Merris [24], and in the chemical context by Balasuramanian [20] to
generalize Pólya’s theorem to all irreducible representations of the group. Gen-
eralization of De Brujin’s theorem to all characters has also been accomplished
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by Balasubramanian [9]. Balasubramanian [19,20] for the first time provided a
geometric, chemical or spectroscopic interpretation to the generalization of this
technique to all irreducible representations of the groups. While such techniques
have been presented they were often restricted to a few kinds of substituents
or colors or ligands. The algebra of applying these irreducible representations-
based combinatorics becomes complex as a function of different types of parti-
tions. Thus, these techniques have been often applied to cases of two colors for
which the expressions become binomial expansions, or three or even four types
of such colors. Yet a full combinational classification of these irreducible pat-
terns requires exhaustive types of all possible distinct colors. For example, the
edges of an octahedron or a cube can be colored at most with 12 different kinds
of colors, vertices of a cube with eight different types of colors and so on. The
computational complexity also grows exponentially as the color type partition,
as represented by Young’s diagram, becomes complex with many rows. Hence
exhaustive generation of such combinatorial numbers can be challenging and
may provide additional insight.

Many practical applications [20,32] often require such multinomially driven
combinatorial expansions. Consider for example, the naturally occurring iso-
tope of Bismuth, 209Bi, has a nuclear spin of 9/2. This means that there are
10 distinct orientations of the magnetic spin vector, which we represent by
mf = −9/2, −7/2, −5/2, −3/2, −1/2, 1/2, 3/2, 5/2, 7/2, and 9/2. One can visu-
alize each of these orientations as a distinct type of color and thus the nuclear
spin statistics of bismuth clusters would require decanomial combinatorics. The
challenge is simply from combinatorial explosions that occur quite rapidly with
cluster size. Fullerene cages also present considerable challenge when extended
for multinomial combinatorics.

In this work we consider exhaustive multinomial combinatorics of the octa-
hedron and its close relative the cube. We have constructed exhaustive combi-
natorial tables for all irreducible representations of the cube vertex (octahedral
face) colorings with eight different types of colors represented by the Young’s
tableau of eight for all irreducible representations, edge colorings with young
tableau of 12, and vertex colorings of octahedron (face colorings of cube), all
of which accomplished using multinomial combinatorics. This also yields some
well-known results on chirality and ligand partitions [25,26,29] as special cases
and isomer counts for all types of partitions exhaustively.

2. Multinomial combinatorics

Let [n] be an ordered partition of n into p parts such that

n1 ≥ 0, n2 ≥ 0, . . . , np ≥ 0,

p∑
i=1

ni = n.
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Then a multinomial expansion in λs is defined as

(λ1 + λ2 + · · · λp)n =
∑
[λ]

(
n

n1 n2 · · · np

)
λ

n1
1 λ

n2
2 · · · λnp

p ,

where
(

n

n1 n2···np

)
are defined as multinomial coefficients and the sum is over all

such ordered partitions, also known as composition of the integer n into p parts.
The multinomial coefficients can be proven to satisfy(

n

n1 n2 . . . np

)
= n!

n1!n2! · · · np!
.

A few properties are that sum of all coefficients in the above expansion is pn. It
can also be proven that(

n + q

n1 n2 · · · np

)
=
∑
[k]=n

(
n

k1 k2 · · · kp

)(
q

n1 − k1 n2 − k2 · · · np − kp

)
,

where [k] stands for all ordered partitions of m such that k1 + k2 + · · · + kp = n,
with ki non-negative integers.

The well-known Pólya’s theorem [7] provides a generating function for
multinomial expansions in terms of the ordinary cycle index of a group, which is
simply sum of all orbit structures of permutations of a group when it acts on a
set D divided by |G|, the order of the group. Williamson [22,23], Merris [24] and
Balasubramanian [19,20] have independently generalized the cycle index, and in
particular, the current author provided a physical and geometrical interpretation
of the numbers enumerated.

Define the symmetry operator T
χ

G as

T
χ

G = 1
|G|

∑
g∈G

χ(g)P (g),

where χ(g) be the character value of g ∈ G for an irreducible representation
� in the group G and P(g) is a permutation operator for g. One can define a
weighted permutation operator by introducing weights, which also appear in the
multinomial expansion. Let D be the set of vertices, edges or faces and R be a
set of colors and let us assign a weight for each color r in R. Then the weight
of a function f from D to R is defined as

W(f ) =
n∏

i=1

w(f (i)).

A permutational operator for each weight W is denoted by PW(g). In a matrix
representation of Pw(g) we can define a tensor version of Pólya’s theorem for
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all irreducible representations in the group. In this representation the trace of
Pw(g) is

T r(Pw(g)) =
(g)∑
f

W(f ),

where the sum is over all f for which gf = f, we thus obtain:

T
W,χ

G = 1
|G|

∑
g∈G

χ(g)PW(g).

T rT
W,χ

G = 1
|G|

∑
g∈G

χ(g)T r[PW(g)] = 1
|G|

∑
g∈G

χ(g)

(g)∑
f

W(f ).

The above generalized version Pólya’s theorem can be conveniently expressed
in terms of generalized character cycle index (GCCI) P

χ

G for every irreducible
representation can be defined as

P
χ

G = 1
|G|

∑
g∈G

χ(g)s
b1
1 s

b2
2 · · · sbn

n ,

where the sum is over all elements of the group and s
b1
1 s

b2
2 · · · sbn

n is the cyclic
polynomial representation if g in G generates b1 cycles of length 1, b2 cycles of
length 2, . . . , bn cycles of length n when g acts on the set of elements D. The
difference between Pólya’s cycle index and the one above is that for each irreduc-
ible representation, we have a cycle index due to the character values multiplying
the polynomial.

A multinomial combinatorial function can be obtained for each irreduc-
ible representation by substituting every sk in the above expression. Let n be
the number of elements in the set D. Then let R be a set of n distinct types of
colors such as white, green, yellow, purple, magenta, green, red, and so on. Let
λ1, λ2, . . . , λn be distinct weights for these colors. The multinomial combinatorial
function is obtained by substituting every sk in the GCCI by λk

1 + λk
2 + · · · + λk

n.
Symbolically,

GFχ = P
χ

G

(
Sk →

∑
i

λk
i

)
.

Thus the above substitution generates a powerful multinomial expansion where
coefficients have rich combinatorial significance for each irreducible represen-
tation of the group. For example, for the identity representation the GF enu-
merates isomers or equivalence classes in Pólya’s term. For the anti-symmetric
irreducible representation (the one which has –1 character values for all improper
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rotations), the index enumerates all chiral isomers. For any irreducible repre-
sentation � whose character is χ , the GFχ enumerates equivalence classes of
functions from the set D to R such that they transform according to the irre-
ducible representation �. We believe that this is the most powerful and general
interpretation under which all enumerative combinatorics is encompassed.

The terms in the multinomial expansion would have all ordered partitions
of n into various parts. First partitions of n are enumerated as provided by
Young’s diagram. Then for each partition all ordered tuples arising from that
partition by allowing permutations of the entries correspond to the terms in the
multinomial. This generates all compositions of n into p parts, and p is varied
from 0 to n, to represent all terms in the multinomial expansion. The whole gen-
erating function then contains terms some of which are combinatorially equiva-
lent. For example, the term λ4

1λ
2
2λ3λ

1
4, λ

4
1λ

2
3λ4λ

1
6, λ

4
2λ

2
4λ6λ

1
7, etc., are all equivalent

to each other in combinatorial terms and their coefficients in the multinomial
expansion would be the same. Thus the unique terms of the multinomial GFχs
are simply represented by the Young diagrams of partition n.

3. Application to the octahedron (cube)

The octahedron and its relative cube present one of the most interesting
cases of multinomial combinatorics since the three-dimensional octahedral group
Oh of 48 operations presents interesting combinatorics, especially for the edge
coloring character combinatorics. Thus as a first case, we shall consider the edge
colorings of the cube and octahedron for all irreducible representations of the
group. Let D be the set of 12 edges and R be a set of 12 distinct colors such
as white, yellow, blue, green, red, purple, magenta, cyan, and so on. There are
exactly 1212 such possible colorings of the edges of the cube. These 1212 col-
orings would transform as various irreducible representations of the Oh group
when appropriately symmetry-adapted. In particular, the number of totally sym-
metric representations, i.e., number of maps among 1212 maps that transform
as the A1g representation of the group is the number of equivalence classes or
positional isomers for the various distribution of colors. Likewise, the number
of functions that transform as the A1u representation, which has the charac-
ter values of –1 for all improper rotations correspond to the patterns of chiral
edge colors among 1212 maps, such that one function is not transformable into
another chiral representation by the operation of the Oh group. Note that unlike
ordinary isomer enumeration, where one considers only the rotational subgroup,
we consider the entire group so that chiral, achiral, and in general all irreducible
representations are covered.

We shall first construct the various cycle indices for the set D of edges.
Note that the polynomials in the cycle index would depend on the set D. Hence
for the 12 edges, the polynomial for the A1u irreducible representation of the Oh
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group is

P
A1u

G = 1
48

[
s12

1 − 3s4
1s

4
2 + (3 − 1)s6

2 + (−6 + 6)s2
1s

5
2 + (−6 + 6)s3

4 + 8s4
3 − 8s2

6

]
,

where we have shown the terms that cancel out for clarity. By replacing every sk

by ∑
i

λk
i

in the above expression, we obtain,

P
A1u

Oh
= 1

48

[
(λ1 + λ2 + · · · + λ12)

12 − 3(λ1 + λ2 + · · · + λ12)
4(λ2

1 + λ2
2 + · · · + λ2

12)
4

+ 2(λ2
1 + λ2

2 + · · · + λ2
12)

6

+ 8(λ3
1 + λ3

2 + · · · + λ3
12)

4 − 8(λ6
1 + λ6

2 + · · · + λ6
12)

2]
The coefficient of a term λ

b1
1 λ

b2
2 · · · λb12

12 enumerates number of times the irreduc-
ible representation A1u occurs in the equivalence classes of functions that con-
tain b1 colors of type 1, b2 colors of type 2, . . . , b12 colors of the type 12. Since
A1u representation has all –1 character values for the improper rotations this also
corresponds to the number of chiral edge colorings of the cube with the given
distribution of colors.

Table 1 shows all the cycle index polynomials of all irreducible representa-
tions for the Oh group for edge colorings. As seen from table 1 another example
of the GCCI would be that of the T1g irreducible representation. The multino-
mial expansion is given as follows:

P
T1g

Oh
= 1

48

[
3(λ1 + λ2 + · · · + λ12)

12 − 6(λ1 + λ2 + · · · + λ12)
4(λ2

1 + λ2
2 + · · · + λ2

12)
4

− 12(λ1 + λ2 + · · · + λ12)
2(λ2

1 + λ2
2 + · · · + λ2

12)
5 + 12(λ4

1 + λ4
2 + · · · + λ4

12)
3] .

Again the coefficient of a typical term λ
b1
1 λ

b2
2 · · · λb12

12 enumerates number of times
the irreducible representation T1g occurs in the equivalence classes of functions
that contain b1 colors of type 1, b2 colors of type 2, . . . , b12 colors of the type 12.

Table 2 shows our complete combinatorial results for the edge colorings of
the octahedron or cube for all irreducible representations. As noted above there
are many more terms in the above expansions than the ones displayed in table
2, but we show only the unique terms as determined by the Young diagrams
of the integer 12. For example, the very first diagram represents 12 terms, viz.,
λ12

1 or λ12
2 · · · λ12

12. Likewise each Young diagram represents multiple ordered par-
titions, and we have shown only one of them since coefficients are same for all of
these. As seen from Table 2 some fascinating results are revealed about the cube
for all irreducible representations of the Oh group. First non-zero A1u represen-
tation occurs for the partition [10+2], which has one chiral coloring. This would



K. Balasubramanian / Multinomial combinatorial group 351

Table 1
GCCI table for the edge colorings of the cube.

112 14 24 26 26 12 25 12 25 43 43 34 62

1 3 3 1 6 6 6 6 8 8
A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 1 1 −1 −1 −1 −1 1 1
A2u 1 −1 1 −1 1 −1 −1 1 1 −1
A1u 1 −1 1 −1 −1 1 1 −1 1 −1
Eg 2 2 2 2 0 0 0 0 −1 −1
Eu 2 −2 2 −2 0 0 0 0 −1 1
T1g 3 −1 −1 3 −1 −1 1 1 0 0
T2g 3 −1 −1 3 1 1 −1 −1 0 0
T1u 3 1 −1 −3 1 −1 1 −1 0 0
T2u 3 1 −1 −3 −1 1 −1 1 0 0

correspond to the term λ10
1 λ2

2. Many other results are combinatorially complex.
An important result that enables us to verify the correctness of all numbers is
that the sum of all numbers for each irreducible representation multiplied by
the number of times that partition occurs for the irreducible representation in a
given column in table 2 is given by

GFχ = P
χ

G(sk → 12)

For example, the above result for the A1u representation gives

P
A1u

Oh
= 1

48
[(1212 − 3 × 124 × 124 + 2 × 126

+ 8 × 124 − 8 × 122] = 185752092669 (1)

We have shown in table 3, all such frequencies thus obtained for all the irreduc-
ible representations. The last few rows for the edge colorings according to the
irreducible representation � can be obtained. For example, the last row is always
given by

1
48

[12! × dim(�)] .

The one previous to the last row is given by

1
48

[
12! × dim(�)

2

]
.

The last but one row is given by

1
48

[
12! × dim(�)

4

]
.
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Table 3
Frequencies of all irreducible representations
in the edge combinatorics of octahedron(cube)
shown in table 2 for all multinomial termsa .

A1g 185788177224
A2g 185752217877
A1u=A2u 185752092669
Eg 371504434605
Eu 371504184051
T1g 557256402066
T2g 557256401934
T1u=T2u 557256029616

a Sum of frequencies x dimension of the repre-
sentation for all irreducible representations is
verified to be 1212.

The last minus third one row is given by

1
48

[
12! × dim(�)

6

]
.

These results follow from the fact that the multinomial expansions that contain
the terms corresponding to last four partitions for edge colorings appear only in
the lead term and thus we have the result.

Table 4 shows the vertex colorings of the cube and also the face colorings
of octahedron. As seen from table 4, first A1u non-zero representation appears
for the partition 4 + 4 then 5+2+1 suggesting that to produce a chiral structure
out of a cube one needs at least four colors of one kind and four colors of
another kind, a result that is well known. The last two rows of numbers and the
first two rows of numbers are directly predicable. The first row is non-zero for
only A1g or totally symmetric representation. The last row is always given by

1
48

[8! × dim(�)] .

The one previous to the last row is given by

1
48

[
8! × dim(�)

2

]
.

While some of these results are well known for the A1g representation in the con-
text of isomer enumeration a full table for all irreducible representations for all
partitions has not appeared before in the literature, and thus our tables provide
complete multinomial combinatorics of ligand or edge partitions.

In order to complete the combinatorics of the octahedron and cube we have
also considered the face colorings of the cube, which are equivalent to vertex col-
orings of the octahedron. Table 5 shows our complete results for this case for all
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Table 4
Cube vertex(octahedral face) combinatorics for all irreducible representationsa .

Partition A1g A2g A2u A1u Eg Eu T1g T2g T1u T2u
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Table 4 Continued.

Partition A1g A2g A2u A1u Eg Eu T1g T2g T1u T2u

a Young diagrams with * must be conjugated to obtain the partition. These are shown in this
way to save space.

irreducible representations. All of the results that we have obtained for the A1g

representation are well-known results for the vertex coloring isomers of the octa-
hedron. The results for the A1u representation are for the chiral isomers, while all
other results for colorings that transform according to the given representation
in the column.

The character cycle indices contain significantly richer and important infor-
mation that could lead to powerful results in number theory and other branches
of mathematics. The substitution of sk by λk

1+λk
2+· · ·+λk

n is one of the possibili-
ties suggested by Pólya. If we replaces sk in GCCI by other symmetric functions
[34] for example

λk
1λ

k
2 + λk

1λ
k
3 + · · · + λk

1λ
k
n + λk

2λ
k
3 + · · · + λk

2λ
k
3 + λk

n−1λ
k
n =

∑
λk

1λ
k
2,
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Table 5
Octahedral vertex (cube face) combinatorics for all irreducible representationsa .

Partition A1g A2g A2u A1u Eg Eu T1g T2g T1u T2u

a Young diagrams with * must be conjugated to obtain the partition. These are shown in this
way to save space.

the generalized cycle indices produce new combinatorics for each irreducible rep-
resentation. We may also consider the replacement by symmetric functions of
the kind

∑
λk

1λ
k
2λ

k
3 where the sum involves all possible symmetric combinations

involving three terms at a time, and so on. In general it can be envisaged that
the method could be generalized to a multinomial symmetric function with a
multinomial expansion, which we call multinomial S-functions. Such topics can
be studied separately.
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Another special case of multinomial combinatorics with character theory is
to choose weights 1, w, w2, . . . , wn. Then we obtain powerful multinomial gener-
ators in ws. If we stop with weights 1, w, and w2 this corresponds to filling the
orbitals with zero, 1 or 2 electrons as by Pauli exclusion principle only at most
2 electrons are allowed [21]. In this case it is a special application to enumera-
tion of electronic configurations that comply with the Pauli exclusion principle.
In the general case, for example, the GF for the A2g representation of the edge
group of cube for this case is given by

P
A2g

Oh
= 1

48

[
(1 + w + w2 + w3 + · · · + w12)12

−3(1 + w + w2 + w3 + · · · + w12)4(1 + w2 + w4 + w6 + · · · + w24)4

+2(1 + w2 + w4 + w6 + · · · + w24)6

+ 8(1 + w3 + w6 + w9 + · · · + w36)4

−8(1 + w12 + w24 + w36 + · · · + w72)2]
Other variations that lead to infinite power series in multinomial weights are also
feasible. There is much to be desired in such powerful multinomial combinatorial
theory.

4. Conclusion

In this work we obtained the full combinatorial tables for all irreducible
representations of the octahedral group for the vertex, edge and face colorings of
the cube and octahedron using multinomial combinatorics. The tables provided
complete enumeration numbers for all possible partitions in the Young diagram
for the colorings that transform according to the various irreducible representa-
tions of the group. As special cases, the chiral edge, vertex, and face colorings
for all Young diagrams were generated. The results for other irreducible repre-
sentations were interpreted. We believe that there is rich combinatorics in GCCIs
when replacements are made for each term by a multinomial of symmetric func-
tions as opposed to an ordinary Pólya replacement. Such topics will be studied
in the future, as they seem to result in novel mathematical identities in number
theory.
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